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This paper deals with models of Synthetic Differential Geometry (SDG). Ac- 
quaintance with that theory is not really presupposed, although some familiarity 
with SDG would put our results into a proper perspective. The interested reader is 
referred to [lo] for information about SDG. 

We will study connections between ‘smooth’ spaces built up from the smooth 
reals R and ‘continuous’ (or ‘set-like’) spaces constructed from the Dedekind reals 
IF? in the topos ‘5” introduced by E. Dubuc (see [3]) as a model for SDG (for the 
definition of g, see Section 4 of this paper). The properties that are valid for the 
first exhibit g as a model of Qnthetic (smooth) Calculus, whereas those valid for 
the second (the continuous spaces) tell us to which extent :// is a model of httri- 
tionistic Analysis. 

In particular, we have a comparison map, the so-called standard map st : R+ fR 
which sends a smooth real xeR into the obvious Dedlekind cut ((q EQ 1 q<x-), 

{q E (9 1 xc q}). (This map has been studied in the synthetic context by Barbara Veit, 
in an unpublished manuscript [ 181.) 

We approach the problem of the connection between these types of spaces by 
establishing a comparison between the topos ;(i and a tolpological topos, the Eucli- 
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&an tops G $troduced in Section 1, a variant of which was considered in [ 1). In 
fact, we construct an adjoint retraction 

$2 A 

with By= 1 and y*-!y * =Q* i es. Thus Q* is faithful, preserves exponentials, and 
moreover preserves continuous spaces. To the casual reader this may seem rather 
pointless. But is not, since we have a retraction of pointed toposes, and this allows 
us to reduce some problems in Y? to the corresponding ones in 6 (Section 2). 

As an application of this adjoint retraction, we give explicit descriptions of the 
continuous spaces in :q mentioned before (Section 5). Indeed, contrary to the 
smooth spaces, continuous spaces are spaces of points of ri-locales (equivalently, 
spaces of models of Tr-propositional theories), and our descriptions follow from 
the known characterizations of such locales in the topological topos of Section 1. 

In Section 4 we show that :g’ is the generic model of a certain theory of loci, or 
formal smooth varieties over an Archimedean local ring, and Q is essentially the 
functor which associates with each locus its set of points, considered as a topological 
space in the site of X. Alternatively, Q may be viewed as the extension to the level 
of toposes (considered as ‘generalized spaces’) of the standard map st : R-G?, where 
R is replaced by the ‘generalized smooth space’ 3, and lR, or rather the image of 
st as a subspace of the continuous space IR, by the ‘generalized space’ 6 which is 
a quotient of a ‘generalized continuous space’. 

Once that the topos ;4 has been introduced, we can apply the general machinery 
of the first two sections: Bar Induction (i.e. separable locales have enough points), 
Brouwer’s theorem on continuity of all functions from the Dedekind reals to itself, 
and several other continuity results involving both smooth and continuous spaces 
are obtained in :q (Section 5). The standard map is constantly used, as well as some 
techniques of van der Hoeven & Moerdijk [5]. 

In a final section we point out that continuity properties of continuous spaces may 
fail if we do not assume the smooth reals to be Archimedean, by constructing a 
topos yfin in which the smooth analysis remains essentially the same, whereas for 
example Brouwer’s theorem fails for the Dedekind reals. 

As a general remark, we should point out that the continuous spaces in our 
toposes do not model ‘full’ Intuitionistic Analysis, as opposed, for example, to the 
models of van der Hoeven & Moerdijk [5]. For instance, principles of countable 
choice and dependent choices (DC) fail because of the connectedness properties of 
the euclidean topos. Indeed, it is an open problem whether SDG is consistent with 
such choice principles. 

On the other hand, some principles of local continuous choice for smooth reals 
hold in our models, which have no analog in full (i.e. with DC) Intuitionistic 
Analysis. 

Although, as said above, the reader is not presupposed to have detailed 
knowledge of SDG, we do assume that he or she is familiar with the general theory 
of Grothendieck toposes, in particular sheaf semantics (see e.g. Reyes [ 151). We also 
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assume the reader to lack some ignorance of the theory of locales; in particular, of 
how locales classify models of T,-propositional theories (see Joyal & Tierney [9], 
Fourman & Grayson (41). 

The results of this paper were presented in November 1982 at the Peripatetic 
Seminar on Sheaves and Logic in Cambridge, England. 

1. Topological toposes, the euclidean topos 

A site (C, J) is called topological if C is a category of topological spaces and con- 
tinuous maps, which is closed under open inclusions (i.e. if X is an object of C and 
Ue (j(X), then the inclusion UGX is an arrow of C) and J is the open cover 
topology, i.e. J is generated by families of the form 

where Ui E o(X) and {c/i} covers X. A topos of the form ‘sheaves on a topologiLa1 
site’ is called a topological topos. 

It is well-known that the Dedekind reals, for example, are interpreted in 
topological toposes by the sheaf of continuous [R-valued functions. An elegant WY 
of explaining this, which is due to M. Fourman, is based on the following lemma. 

1.1. Lemma. Let (C, J) be a topological site, X E 43. Then X is an adjoint retract 
of the locale Q(X) of J-closed cribles on X, i.e. there are continuous maps 

X$x(X) 

with ri = lx, Intxl 5 ir. 

Proof. If UE C(X), let r*(U) be the closed crible generated by Uc;X, i.e. r*(U) = 
{ Yf. X 1 f(Y) c U}. And if KEG(X), let i*(K) be the largest open UC X such 
that the inclusion Uc*X is in K, i.e. i*(K)= u{ V open cXI Vc*XeKj. i* and r* 
are /\V-maps, and i*r*= 1 clearly. Also since i*(K)c+Xe K, r*i*(K: SK, ix. i 

. 

Let d = Sh(C, J), where (C, J) is an arbitrary site. Since Sh(lR), sheaves on the (es- 
ternal) space IR of Dedekind reals, classifies the notion of a Dedekind real, the sheaf 
ll$ of Dedekind reals has as sections at CE C the locale maps Q(C)-+ m. In the case 
of topological sites there is a simpler representation which uses the fact that V? is a 
?i -locale: 

.f 
1,2. Definition. A locale X is called T, if for all pairs Y 7 X into X, fr g implies 
f =g. (Recall that f=g iff for the corresponding framemaps f *9g*: t*(X)3 p‘( Y) it 
holds that g*s f *, i.e. IWE df( Y) g*( V)sf*( V).) 
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1.3. Remark. Note that for topologicyl (sober) spaces, a space X is & in the usual [ 
3 

topological sense iff for all maps Y T X, Y a (sober) space, fig implies f= g. In 1 
i; 

particular, if X is a sober space which is 7’i in the above localic sense, X is a i 

Tr-space in the usual sense. The converse need not hold, but all regular 1 

(Hausdorff) spaces are 7’i as locales. { 

f 
1.4, Lemma. Let As B be a pair of continuous maps of locales such that f * is 
adjoint to g*, say f *e+g*, and let X be a T1 -locale. Then f and g induce maps 
Cts(A, X)*Cts(B, X) by composition, which are inverse to each other, i.e. 

Cts(A, X) z Cts(B, X). 

Proof. Since 1 q&(g*f $9 f * *S lrtA), this is immediate from definition 1.2. g 0 

1.5. Corolhry. Let A be a T,-propositional theory, and let A,-, be the corresponding 
locale in Sets (so Sh(AO) classifies A-models in Grothendieck toposes). Let 
4 = Sh(C, .J) be a topological topos. Then the object of A-models in 8 is given by 
the sheaf 

Cts(-, A,) : Cop -+Sets. 

1.6. Examples. The sheaf IRA of Dedekind reals in cf’ is (isomorphic to) the sheaf 
K$ (X) = Cts(X, IR), XE C. Similarly for Bairespace N’, Cantorspace 2’, and the 
functionspace I!?‘. Note that Sh(lR’) classifies continuous maps from the formal 
reals to itself. In topological toposes, however, the locale of formal reals coincides 
with the space of Dedekind reals, by the following proposition. 

1.7. Proposition. Let G = Sh(C, Jj be a topological topos. Then the Fan Theorem 
holds in c’. In particular, the Cantorspace 2N and the Dedekind unit interval 
[O,l]cX (r .2 rompact in 8, 

Proof. Suppose S is a subsheaf of the sheaf 2<“” of finite sequences at X E C, such 
that 

X II- “S is a monotone inductive bar”. 

For each CYE 2N, the corresponding constant function a : X +2O‘l is an element of 
2”(Xj (an element of the internal Cantorset 2” at stage X, by Corollary 1.5), SO 

X II- Z7n a(n) ES, where a(n) is the initial segment {cr(i)}i,, of ar. Thus, if for a 
point x E X we let 

S,=(uE2”(Znbd c/x of x with C/,I~-MS}, 

we find that each S, is a cover of 2N externally. Clearly, J& is monotone and induc- 
tive, so by the external Fan Theorem, { > E & for all XE X. Thus X II- ( )E S. Cl 



In the topological sites that we will meet later on, all spaces are locally compact, 
and we can improve a bit on the preceding proposition, by replacing the Fan 
Theorem by the principle of Bar Induction. The importance of the validity of Bar 
Induction in our context is that it implies that each ‘countably presented’ (separable) 
locale has enough points (cf. Fourman & Grayson [Lb]). 

1.8. Proposition. Let A = Sh(C, J) be a topological topos, and suppose all X E G are 
locally compact. Then Bar Induction holds in (4. 

Proof. Let S be a subsheaf of W”” at X, such that 

XII- “S is a monotone inductive bar”. 

For each XE X we may choose a relatively compact neighbourhood VU. Now if 
CYE tNN, the constant function a: X-+Nh” is an element of IN’“;(X) (Corollary IS), 
and hence Xt!--3zd(n)~S, i.e. there is a cover (Ut>, of X such that U,Qib 
o(n) ES. A finite set of these U:‘s cover V,, and since S is forced to be monotone, 

Vx I/-- “Q(m) ES”, for some m. 

Thus, if we let S,= {u 1 I/;IF u E S), S, is an external monotone inductive bar. 
Hence ( > E S,. by external Bar Induction, i.e. vV I+- ( )E S. Since the r/, cover X, 
also X/l-( )ES. 0 

1.9. Definition. A topological topos that will be of much use to us in the sequel is 
the eucfidean topos. Let E be the topological site consisting of locally closed 
(=locally compact) subspaces of some [R”, n E iN, and Cm-maps between them. 
Recall that if XC_ IR”, Y C_ IT?” are objects of E, a C”-map X--+ Y is a function 
f: X-+ Y such that for all XEX there exists an open nbd Z.J, of x (in IR”) and C”- 
map g: U,+iRm such that g 1 (U,nX)= f 1 U,. By a partitions of unity argument, 
f : X -+ Y is a Cm-map iff there exists an open U c X and a Cm-map g : U + R”’ (C” 

in the usual sense of having all continuous partial derivatives) such that g 1 X=f. If 
Xc IR” is closed, we may take I/= IR” (‘smooth Tietze’). Therefore, closed objects 
of E are convenient to deal with. Fortunately, we may restrict our attention to closed 
objects of IE, since if UC IV’ is open, U is isomorphic in IE to a closed set 0~ V+‘: 
let $: IR” + [O, I] be a C”-r haracteristic function for U (f(x) >O iff x E V) and let 
o= {(x, y) E IR” x IR ) f(x) - J = l}. The euclidean topos is the topos of sheaves on the 
site IE with the open cover topology, and is denoted by 6 =Sh(iE). 

1.10. Proposition. In the euclidean topos R, all funcfions R+lT? are conrinuous 
(hence uniformly continuous on closed intervals, by Proposition 1.6). 

Proof. By Corollary 1.5, continuous functions from the formal reals to itself at 
stage XE E correspond to continuous maps X+l’@, or Xx lR-+Ii? in the real world. 
By Proposition 1.6, the formal reals have enough points in 8, i.e. they coincide with 
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the space of Dedekind reals. Such a map (p : XX lR-+X acts internally, as a natural 
transformation 

T: R-G? over E/X 

by composition: given Y f,X in IE and CTE lR( Y), i.e. (Corollary 1.5) Yz fR, 
I = cp 0 (4; a}. Hence, to show that all internal functions lR-+R are continuous, 
we need to prove that any natural transformation t : FWR over IEM comes from 
such a continuous p : X x R4R. 

To this end, pick such a T, and let q = r&Q, where p19 p2 are the projections 

X 

We claim that for any Y f, X in E any continuous CT : Y -+ IR, z$cr) = q 0 (f, ar). TO 
see this, choose such f and cy. ar is not a morphism of IE, but its restriction to points 
of Y is, and now we can apply naturality of T: choose any point y E Y, and apply 
naturality of T to the diagram 

in E/X. Then one gets 

WMY) = flp&W) = Ir,, of(vj(a(y)) = r&a, f j)(y). C 

1.11. Remark. If M is any space which is locally homeomorphic to a space in IE (e.g. 
A4 is a manifold), and N is any space, M and N have interpretations MP and Nr: 
in cf” (as in 1.6: A& = Cts(-, M), N8 = Cts(-, N)), and the same proof gives that 
cf’ t= “all functions M4 -+ Nc: are continuous”. 

2. Adjoint retractions of topsses 

As stated in the introduction, one of the themes of this paper is a comparison of 
the smooth topos :g which will be defined later on, and the euclidean topos 8 which 
we just described. We will! now sketch the general context in which this comparison 
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takes place. (We will not formulate things in all generality, however. Adjoint retrac- 
tions will be more extensively discussed elsewhere.) 

Let C and D be categories with finite left limits, both equipped with a sub- 
canonical Grothendieck topology. If P : C-ND is a left-exact functor which preserves 
covers, P induces a geometric morphism Sh(D) --%h(C). Explicitly, the inverse 
image functor p *: Sh(C)*Sh(D) is the left Kan extension of 

(Y is the Yoneda embedding ), while the direct image functor is defined by “com- 
pose with P” : Sh(lD)-,Sh(C). 

A (left-exact) functor P: 42 + ID sometimes also induces a geometric morphism 
Sh(C)-Gh(D). The functor of presheaves 

P* = compose with P : SetsDoP+SetscoP 

has both adjoints, the Kan extensions, 

lir& -I P’i liI+ 

and thus P induces a geometric morphism 

q : SetsCoP+SetsDop 

with P* = q* as inverse image. 

2.1. Lemma. Let P: a3 -*ID be any functor. Then the geometric morphism 

q : Setscop+SetsDop 

described above restricts to a geometrk morphism Sh(C)-+Sh(tD) iff P has the 
folio wing 

fa 
Covering Lifting Property (CLP). For every cover {Da--+ PC}, in 5 there exists 
a cover ( Ca* C}, in C such that every P(g$ : PCB --) PC factors through some fa. 

Proof. (e) We need to show (cf. [6, Theorem 3.471) that the restriction of q* to 
representables, 

ID + SetscoP, D H D(P(-), D) 

maps covers to dense families. To see that this follows from the covering lifting pro- 
perty, take a cover {D, fa -D}a in D and an element h E lD(P(C), D) for some 
C&Z. Make the pullbacks 

fol 
Da------ D 

I I h’ h 

L-t 
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f,’ 
and apply the covering lifting property to the family {Da+ PC), to get a cover- 
ing {CD-% C} in C. Each Pgfl is of the form f& 0 k,, so for each restriction h 1 ga 
of tt we have 

hlgS=defhoPgS=hof;oka=faoh’ok,. 

Thus, given h E D(PC, P) we have for each ($2 C an element h’o k, E lD(R$, 0,) 
which is mapped to h 1 gp by 

ID(&), D*)Z UP(-)9 D). 

In other words, the family { lD(P(-), D,)AD(p(-), D)), is dense. 
(a) For the converse, we can just reverse this argument for the particular case 

that PC--%D is the identity on D=PC. Cl 

Given a geometric morphism Q : SetsCop+SetsDoP induced by a functor P : C + ID 

having the CLP, its restriction Sh(Q=) Ash(D) can thus be described as 

Q% “compose with P, then sheafify”, 

(q*(X) is a sheaf if X is, when P has the CLP). 
If P is left-exact, preserves covers, and has the CLP, we have two geometric 

morphisms 

Sh(C) & Sh(D) 
P 

and q* is just “compose with p”, i.e. q* =p*. In the case that we consider in this 
paper, the functor P has a left adjoint L : ID-4 such that P 0 L = 1. It then follows 
that this adjunction lifts to an adjunction “compose with L” -I “compose with P” 
between the categories of presheaves Setscop eSetsDoP. Hence in this case the left 
adjoint p*: Sh(Q+Sh(D) to p* is “compose with L” followed by sheafification. 
Therefore p *p* = 1, i.e. p is an inclusion, and consequently q is a surjection and 
qp= 1. 

We put all this together in the following theorem. 

2.2. Theorem. Let P : C -+ ID be a left-exact functor which preserves covers and has 
the covering lifting property. Then P induces two geometric morphisms 

Sh(C) & Sh(D) 
P 

with p* -I ps = q* =+ q+. If P has a left adjoint-right inverse, then p is an inclusion, 
q a surjection, and q-p== 1. El 

We will call a pair of geometric morphisms as described in this theorem an adjoint 
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retraction. Let us note some properties of adjoint retractions that we will need later 
on. 

roposition. Let Sh(Q +*T Sh(D) be an adjoint retraction induced by a 

functor P : C + a> as in Theore; 2.2, and let A be a TI -locale. Then q* = p* pre- 
serves the sheaf of A-models. 

Proof. First note that if P: Q= -ND satisfies the hypothesis of Theorem 2.2, so does 
every localization P/C : C/C + D/PC. Hence we have adjoint retractions 

(*I Sh(Q/C * Sh(lD)/PC 

for every CE d=. The object of A-models in Sh(Q=) is given by AShtC)(C) = 
Cts(Q(C), A), and similarly for AShtlD). But the pair of geometric morphisms (*) in- 
duces an isomorphism 

Cts(Q(C), A) * Cts(G(PC), A) 

(natural in C), by Lemma 1.4. Thus q*(ASh& s AShtlDJ. 0 

Proposition 2.3 tells us for example what the Dedekind reals are in Sh(D), if we 
know them already in Sh(Q: if lRsh(c) denotes the sheaf of Dedekind reals in Sh(C), 
lRSh([DI is (isomorphic to) the sheaf lRsh(c) OP. 

s, 
2.4. Proposition. Let Sh(C) + -> Sh( D) be as in Theorem 2.2. Then q is locah’y 

P 
connected, in particular q * preserves exponentials. 

Proof. The preservation of exponentials by q* is equivalent to the existence of a left 
adjoint q! to q*, satisfying Frobenius reciprocity; i.e. for XE Sh(Q, Ye Sh(lD), the 
canonical map 

9!(XX 4*(Y))-??!(X) x Y 

is an isomorphism (cf. Barr & Par6 [2]). 
Clearly in our case, p* witnesses the existence of such a q!. To show that q is 

locally connected, we have to check th;jt for every X&h@), the inverse image of 
q/X: Sh(C)/q*X+Sh(ID)/X preserves exponentials. But this is clear from the fact 
that if q is (part of) an adjoint retraction, then so is q/X. U 

2.5, Corollary. Let Sh(C) aL, Sh(D) be as in Theorem 2.2. Then q* is an open 

geometric morphism, i.e. [* preserves the universal quantifiers Vf (any map 
f : X-+X’ in Sh(D)). Hence q* preserves and reflect3 all first order /ogic. 

roof. Every locally connected morphism is open (cf. Johnstone [7]). But the 
preservation of universal quantification also follows easily directly from the surjec- 
tivity of P in this case. Cl 
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2.6. Example. Let Sh(Q=) *T Sh(D) be as above, 2.3-2.5 together give very strong 

pl eservation properties ofPq *. Any property of models of 7+locales like the 

Dedekind reals, elements of Bairespace IN”, etc. that does not involve quantifica- 

tion over arbitrary subsets holds in Sh(Q=) iff it holds in Sh(D). The logically minded 
reader would perhaps like to rephrase this by saying that the theory of Sh(C) (in the 
appropriate language without arbitrary powersets) is a conservative extension of 
that of Sh(D). As an illustration of this phenomenon, let us mention the following 
instance: 

Claim. Sh(@) satisfies “all functions IR -+I? are continuous” iff Sh(D) does. 

Proof. Let us write the relevant statement as 

VfEIRm VXEIR v&q&J (p<f(x)<q~~p’,qfE(q(p~<x<q’& 

Of course, q* preserves the interpretation of the rationals Q, since this is a constant 
sheaf. By 2.3, q* preserves the sheaf of Dedekind reals, and hence by 2.4 it also 
preserves the interpretation of the exponential IR’! Thus by 2.5, this statement 
holds in Sh(6Z) iff it holds in Sh(D). Cl 

3. C”+ings 

Here we will collect some of the basic properties of Cm-rings that we will need 
later on. Almost nothing in this section is new, and most of the proofs will be 
omitted. For more details, the reader is referred to Kock’s book, [lo, $0111.5 and 
61; see also Dubuc 131, Reyes [ 16, fast. l), and Lawvere [ 111. 

Let C” be the category whose objects are the spaces IR”, n E N, and whose mor- 
phisms IR” + fRm are the C“‘-maps. C” is an algebraic theory B la Lawvere, and is 
called the theory of P-rings. By definition, a P-ring (in Sets) is a finite product 
preserving functor A : C” -‘Sets, and homomorphisms of C”-rings are just natural 
transformations. 

If 4 is a (?-ring, A@) is its underlying set, and every smooth map lR”f, mm 
has an interpretation A(f) : A(Qn +A(iR)*. Note that since all constant functions 
and the ring operations of IR are smooth, a P-ring has an Kalgebra structure, 
and morphisms of C”-rings are particular /l&algebra homomorphisms. (As usual, 
we will often use the same symbol A for the functor A : C” *Sets and its underly- 
ing set.) 

Here are some examples: The Yoneda lemma implies that for each n, the 
free CO-ring on n generators is the functor C”(W) defined by P(lR”)(lR”)= 
C”(fR”, m”), the set of smooth maps from ll? to tRm, and C”(tI?“)(f) = compose 
with f, f a morphism of COD. As was just pointed out, C”(P) will most of the time 
not stand for this functor, but for its underlying set C”(ll?, IT?). Its n generators are 
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the projections. More generally, if A4 is a (smooth) manifold, we have a C”-rbg 

C”(M) which is defined just as C”([Rn) was: the underlying set of C”(M) is the !:et 
of C--maps M-G, and the morphisms of C” are interpreted via composition. (Of 
course, C”(M) looks like a dual of A& and indeed it is, as we will see below.) 

A host .of other examples can be derived from the following proposition: 

3.1. Proposition. Any (algebraic) ideal I in a Cm-ring A is a C”-congruence. Thus, 
the canonical projection p : A -+A/I induces a C”-ring structure on A/I making p 
into a homomorphism of P-rings. •1 

In particular, for any ideal 1 in C”(lR”) we have a Cm-ring C”(R”)/l. All finitely 
generated Cm-rings are of this form, and we write 

(C”-rings)f, = Cm-rings of finite type C C” rings 

for the full subcategory of Cm-rings whose objects are of the form C”(R”)U. Note 
that homomorphisms of (Z” -rings)f, can be described quite explicitly: a homo- 
morphism 

C”(lRn)/I-+C”(Rm)/J 

is an equivalence class of smooth maps cp : I?“’ -4Rn with the property that 
I~q*(J)={flfoq~J}, two suchmapspand@beingequivalent if for each pro- 
jection ~&R”-+lR (k=l,...,n), nkocp=zko#modJ. 

A C--ring is finitely presented iff it is of the form C”(lR”)/I, where 

I=(&, l *a 9 gP) is a finitely generated ideal. (C”-rings)f, is the full subcategory of 
Cm-rings whose objects are finitely presented. An important observatioll, due to 
Lawvere, gives some finitely presented P-rings: 

3.2. Proposition. For any smooth manifold M, C”(M) is a finitely presented C”- 
ring. q 

In fact, it suffices to show this for open subspaces of lRn, since every manifold 
is a retract of one of its open neighbjourhoods. If U is an open subspace of some 
ll?, then there exists a (smooth) characteristic function xv : IR” +[O, I] for I/ (tkaat 
is, xv(x) > 0 iff XE U), and xv can be used to embed U as a closed set 0 in KY T I: 

We have a ‘restriction map’ 

rg:cym”“)-c”(U), @(f)=f”l 

which is a homomorphism of C--rings, and ker(@) =. //i, the ideal of functions 
that vanish on 0. What Theorem 3.2 says in this case is that 

. fi; = (y * X”(X) - 1). 
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Recall that if Xc I!?” and YC lRM are arbitrary subsets, a C”-map X-+ Y is a 
function X f, Y which is the restriction of a C”-map g : U-+ IR” defined on some 
open nbd of X. Thus, we may define a C--ring C”(X) in exactly the same way as 
we defined C”(M), M a manifold. If X is closed, C”(X) is of finite type: C”(X)z 
C”(P)/,,&, .,& being the ideal of functions g with g 1 X=0. Therefore we have 
a contravariant functor from the category IE of (locally) closed subspaces of some 
IT? and smooth maps (see Section 1) to (C”-rings)f,, and it follows easily from the 
explicit description of homomorphisms of C”-rings of finite type that this contra- 
variant functor is fsrlr and faithful. We will come back to this functor shortly. 

But first we discuss coproducts of C--rings (of finite type). If A and B are ar- 

bitrary P-rings, we write AO, B for the coproduct, and A ~-A@~ B-i, B 
for the canonical inclusions. Note first that it follows from the universal property 
defining the coproduct that if ICA and JC B are ideals, 

(A/I)O,(B/J)z(AO, B)/(I, J), 

where (I, J) is the ideal generated by iA Uie( J). Also, since C”(iR”) is free on rr 
generators, 

C”(lT?“)o, C”(lRm)scm(lRn x IR”), 

and the coproduct inclusions come from the projections 

pe- lRnxfRm~[Rm. 
Thus, 

C”(m”)/IO, Cw(lRm)/JsCw(lRn x R”)/(I, J), 

and(I,J)isgeneratedby{fonl(f~~}U{goIrzIg~J}.Formanifolds,wecando 
better: If M and N are manifolds, 

C”(M)@, C”(N) s C”(M x N). 

In order to be able to express our geometric (as opposed to algebraic) intuitions 
about C”-rings, we define the category of foci (or formal Cw-varieties, cf. Reyes 

1161) as 
IL = (C”-rings);:. 

Thus, a locus is the dual of a C”-ring A =C”(R”)/I, and we will write A for this 
dual. One advantage of passing to duals is that the category E now becomes a sub- 
category of II_: we have a fubl embedding 

IEML, X~C”(X). 

From the preceding remarks, we conclude that the image of E under this embedding 
consists (up to isomorphism) of the duals of Cw-rings of the form C”(lR”)L& 
where F is a closed subset of IR”. 

Another important subcategory of IL will be the full subcategory of duals of germ- 
dftermined C”-rings, defined as follows. A C”-ring is called local if it has exactly 



Smooth spaces versus continuous spaces 155 

one maximal ideal (i.e. if its underlying ring is a lJca1 ring). A C”-ring L of finite 
type is local with residue field IR iff it is isomorphic to a quotient of a ring of germs, 
i.e. iff L is of the form C~(lR”)/I, where C’;(P) = C”(lRn)/. //for is the C”-ring ijf 
germs at 0 of smooth functions tRn +I? (,/$, is the ideal of functions f whose germ 
flo at 0 is the zero-germ). A C”-ring A is germ-determined iff it is embedded in a 
product of local P-rings with residue field IR, i.e. iff for any CI EA, 

a=0 in A e for all /I -=%+ L a local P-ring with 

residue field IR, h(a) =O. 

Most of the time we will work with the following equivalent description of germ- 
determined (F-rings of finite type. An ideal 1~ C”(lR”) is called a germ-determined 
ideal if for all f E c”(V), VXE lRn S!g,E I f l_y = gx Ix implies f E I. Nore that it suf- 
fices to check this for points x in the set Z(1) = {XE IR” 1 f(x) = 0, all f E I} of zeros 
of I, since Z(I) is closed. 

3.3. Lemma. A C”-ring of finite type C”(R”)/I is germ-determined iff I is Q germ 

determined ideal. 0 

This implies a Nullstellensatz for germ-determined ideals: a germ-determined 
C”-ring C”(R”)/1 is the zero ring iff Z(I) = 0. 

If 1~ C”(V) is germ-determined, and f e C”(R”), (I, f) is also germ- 
determined; in particular, etrery finitely generated ideal is germ-determined. 

Clearly, any ideal of the form I ,f/i is germ-determined, so the inclusion EC+ L fat- 
tors as 

3.4. Proposition. The full embeddings E L G and G L IL have righr adjoints 
y : G + E and 1: II -+ G respectively. 

Proof. If & C”(lR”), let r be its germ-determined reflection, 

I’= If I Vxf I*~%-~ 

where I Ix = {g Ix 1 g E I} is the set of germs at x of elements of I. Then A is defined 

bY 
--__ _- 

A(C”(R”)/I) = C”(W”)/K 

il is functorial (hence independent of the presentation of a (?-ring), since for any 
P-map f: lRn +lTP, (f*(I))’ c f *(r). It is straightforwardly checked that j -1 A. 
The functor y is defined by 

y(cm(m”)/r) = Z(I). 
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Functoriality of y is again easily deduced from the explicit description of morphisms 
in (C”-rings)f,, and i --i y is again straightforward. Cl 

Observe that Proposition 3.4 gives us an explicit description of inverse limits in 
(G: first take the limit in IL, then apply A. Also note that since i and j are full, we 
have isomorphisms 

natural in XE IE, A EG. Also, there are canonical embeddings 

ipkA in (I% jM&D in IL. 

In the sequel we will mainly work with germ-determined C”-rings of the form 
C”(U)/I (U open in IR”). By the isomorphism @: C”(K?‘)/. #z-+Cm(U) dis- 
cussed above, these are of finite type. To see when they are germ-determined, we 
need the following extension of Lemma 3.3. 

3.5. Lemma. Let I c C”(U) be any ideal, and consider the isomorphism 

WI: c”(~“+‘)/~-‘(r)-+c”(w)/r~ 

Then I is a germ-determined ideal iff @-‘(I) is. Or equivalently, (since @-‘(I) = 

r*w=(f ]f"WD9 

r*cl'> = gyr))-. 

Thus, the functor A of 3.4 sends C”(U)/1 to C”(U)/1 

Roof. ([*(I))’ C_ [*(r> always holds (functoriality of I). For the converse, take an 
6;: IRni-l -+I? with Fo<E/: So for each XECI~ IF?” we have a function g,EI such 
that F* r lx=gxlx. But then if (x0, yO) EZ(~*(I)) =&Z(I)), x0&Z(I), and we let 
G: UX [R--W be the function 

and let H: II?+’ +lR be a function which agrees with G on some open neighbour- 

hood of o* Then ~J(,&)=FJ(,,,y,)r and H 0 t(x) = G 0 r(x) = gXO(x) for all x in 
some neighbourhood of x0, so HE (<*(I))“, and therefore FE (4 *(I))‘. Cl 

4. The smooth topos :/i and its relation to the euclidean topos 4 

In the previous section, we introduced the category (G of duals of germ- 
determined CO-rings of finite type, and we noted that these are precisely the C”- 
rings which have a representation of the form 
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where U is an open subset of some IR’, and I is a germ-determined ideai. From 
now on, we will work with representations of this form. (-5 has finite limits, and pro- 
ducts in U2 are given by the formula 

C”( U)/Io, C”( V)/‘J= C”(U x V)/(I, J)’ 

for coproducts of germ-determined C”-rings. 
We equip Q; with a Grothendieck topology whose basic covers arg families of 

canonical inclusions of the form 

where { Ua)a is an open cover of U. The resulting site will also be denoted by G, 
and we write 

for the topos of sheaves on (I2 

4.1. Lemma. The topology of the site G is subcmonical. 

Proof. Arthough in general a homomorphism C”(U)/I-+C”( T/)/J need not be in- 
duced by a smooth map V+ U, this is true if U = IR”. From this, the result follows 
easily: if { &)a is an open cover of U, and 

is a compatible family of maps to the dual A of a C--ring A = C”)f(R’“)/ J, each .& 

comes from a smooth function fa=(f~,.e.,fam): Q+Rrn, and _IC ~~-+--j~ 1 U#+ 
(I 1 Ua n I/p)- by compatibility. The unique f : C”(U)/I-+a which extends all the 
fa is now obtained as f = C fat&, where {6,.& is a partition of unity subordinate to 

the cover ( U,}(l of U. 0 

This lemma was already observed by E. Dubuc, who introduced the topos .6 as 
a model for synthetic differential geometry (cf. [3]). The ring of linetype R in .I/ is 
the representable object C”(lR), i.e. 

R : (6OP-+Sets, A c-) the underlying set of A. 

-5- 
The object D of first order infinitesimals is the representable object C”(IR)/(X-). 4 
satisfies the Kock-Lawvere axiom (‘axiom 1’ of Kock [IO]), that is 

RxRzRD. 

The integration axiom which ensures the existence of primitives holds in 1.5 (Van 
Qt.2 & Reyes [Ml), and (-)D has a right adjoint (-)D (see Kock [lo]). Generaliza- 
tions of these axioms for infinitesimal spaces other than D also hold in the model. 
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% classifies a geometric theory of loci or formal smooth 
described as follows. Let us consider the language L with 
n-ary function symbol f for each JE C”(lR”), and an n-ary 

varieties, which can be 
one sort R, having an 
relation symbol Loc( I) 

(‘the locus of I’) for each germ-determined ideal I c C”(lR”) (n = 0, 1, . ..). Our 
basic theory To consists of the following groups of axioms: 

(I) (R&- is a C”-ring. 
(II) AXE R” (f(x) = O++Loc(f)(x)), all n E N, where (f) is the principle ideal 

generated by f in C”(P). 
(III) ~/XE Rn f$~ R”’ (Loc(l)(x)~Loc(J)(y)*Loc(l, J)(x, y)), where 1~ P’(lFY), 

Jc_ C”(lR’“), and (I, J) is the ideal generated by 10 nl UJ 0 n2 in C”(iF?” x ,I”), all 
n,m&.l. 

(IV) I?x E R” (Lot(Z)(x) --+Loc( J)@(x)), where 1~ c”(P), JC C”(lR”‘), and 
cp E C”(P, P”) is such that p*(J) c I. 

4.2. Proposition. For any (Grothendieck) topos .F, there is a natural bijection be- 
t ween TO-models in .F and leftexact functors from WP to .F. 

Proof. Routine. q 

In the sequel, we shall identify 7&models with the corresponding functors. 
The category a3 of germ-determined loci introduced in Section 3 can be given the 

structure of a site, a;,,“, by defining the Grothendieck (pre-)topology to be 
generated by the duals of cocoverings of the form 

A[l/a] 

(0 A 
/ 

whenever a + b = 1, 

\ A[l/b] 

and the empty family for the zero ring 0. (Here A[l/a] is the universal solution to 
the problem of inverting a E A in the category of germ-determined P-rings.) As in 
the case of the Zariski topos, the coverings of this pretopology are precisely the 
families of the form 

such that the ideal generated by the {a,), is all of A. 

Since by the Implicit Function Theorem, 

C”(IR”“)/(I,x,+,cp(x)- l)=CY’(U)/(I! U) where W=IR”‘U&O), 
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this algebraic description of the site is equivalent to the following topological one: 
the covers of C”(lR”)r are the finite families 

(ii) { C”(U*)/(I 1 I/a)_ -+coo(u)/I}, 

where { Ua)a is an open cover of IR”. 
In the presheaf topos SetsGop 

II__ 
we have the canonical @“-ring R = C”(lR), and the 

covers in (i) clearly just force R to be local, so we have 

4.3. Proposition. Let M be a TO-model in a topos .E Then ME ’ ‘R is local” iff the 
left-exact functor M: GOP -+ .I/’ preserves the covers of Gfin (i.e. M is con- 

tinuous). q 

In addition to forcing R to be local by the coverings in (i) (or equivalently (ii)), 

we can force R to be Archimedean by declaring the family 

(iii) W%m)c+R),,.. 

to be a cover, where (-m, m) here stands for 

C”({xeR -m<x<m})&. 

Topologically, this comes down to adding {CO”(-m,m)c+C”(IR)},,, as a cover to 
(ii). Since for any open cover { Ua}a of ll?, finitely many of the Ua already cover 
(-m,m), a straightforward induction argument shows that this comes down to 
having all families of the form 

(iv) { C”(U,)/(I 1 ua)- GC”(lR”)/I},, 

where { Ull} is an open cover of lRn, as coverings in the site. (This was first noted 
by E. Dubuc & A. Joyal.) But the site that we have now obtained is precisely the 
site G that we started this section with. So for the topos .4 = Sh(G) we have 

4.4. Proposition. 9 classifies the theory TO of germ-determined loci with the addi- 
tional axioms saying that R is locai and Archimedean. q 

Let us therefore return to the site G, and have a look at the functors y and i that 
we introduced in Section 3, in order to see whether we can apply the results of Sec- 
tion 2. 

4.5. Lemma. (a) The functor y : G-+ IE is left-exact, preserves covers and has t!re 
covering lifting property. 

(b) The func.gr i preserves and reflects covers. 

Proof. (a) y is left-exact because it has a left adjoint. y sends a basic cover 
C”(U,)/(I 1 UJc+C”(U)/I}, to the family {Z(Z)n U&Z(Z),\,, so it is clear that 

y preserves covers. To check the CLP, take A = C”(U)/Z in G, and suppose that 
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{_!$}, is a cover of Z(I) by open subsets of U. Then let IV” = V,U U\Z(i), so that 

{ V=( W,)/(I 1 W*)_ c+C”(U)(I}. is a basic cover in G which is mapped by y onto 
{ V&n Z(I)c,Z(I)}*. 

(b) Suppose X is closed in IT?“, and { Va}a is a cover of X with each Va open in X. 

We need to prove that {C”( V&C”(X)}, is a covering family in G. Write Va = 
Xf7 &, Ua open in Rn. Then C”(X)aC”(R”)/.Hi, and C”( V,)=C~(U&‘.&U~, 
so it suffices to show that (.//$I V,)’ =. d$&,. C, is clear, and for 2 we note that 
a smooth function f: LI, -*IT? with fl U$?X=O extends locally to a function 
g: R”-+lR with g1 X=0: for pick XE UQ, and choose nbds V’ and WX of x with 
XE Vxc &C W& I@‘& U. Let h be a smooth function lR”+lR with hi &=l, 
h~(m”\W,)=O,andletg:IR” + IR be defined by g(x) =f(x) 9 h(x) if x E U, g(x) = 0 if 
X@ U. Then g is smooth, and g coincides with f on I& 

It is clear that i reflects covers, since yi = 1 and y preserves them. Cl 

We can now apply Theorem 2.2 with y as the functor P. Since yi = 1, this gives us 

4.6. Theorem. ‘There is an adjoint retraction 

of toposes, i.e. T y = 1, and y*i y*=~*-&. The fkctor Y*=Q*: Sh(lE)+Sh(G) is 
“compose witk y : G-W’, and the functor y * : Sh(G)-+Sh(lE) is “compose with 
i: E-G”. G 

Note that the explicit description of y* in this case comes from lifting the adjunc- 
tion i-i y of Proposition 3.4 first to the level of presheaves (“compose with i” -I 
“compose with y”: SetsGop*SetsEop ) and then restricting it to sheaves by Lemma 
4.5. 

4.7. Remark. In fact Y and rs’ both have a canonical point, and the retraction of 
4.6 is a retraction of pomted toposes. This is so because the global sections functor 
r: ‘4 *Sets has a right adjoint B: If SE Sets, we define a sheaf B(S) on G by 

B(S)(A) = s )+Q. 

Since y(A) = r(A) as sets, it is clear that we have a bijective correspondence 

T(A)+S 

A+B(S) ’ 

This extends to arbitrary objects of Y (not just representables), since r: +-Gets 
preserves all colimits. Thus, we have a canonical point p$ : Sets-+ !q, and in pre- 
cisely the same way we can define a point p p : Sets--+& of cf” whose inverse image is 
the global sections functor. Since Q* and y * from 4.6 preserve global sections, it is 
clear that Q 0 p 4 = p8, y 0 pE =ptc, i.e. Q and y are maps of pointed toposes. 
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As a consequence of this observation, the global sections functor :&--%?ets (or 
(( LSets) preserves all the constructions performed in 9 (or (7 ) by taking limits 
and colimits. This can be used for example to compare the De Rham cohomology 
of ifi with the one of Sets, as in Moerdijk & Reyes [ 121. 

5. Dedekind reals and smooth reals in :+, the standard map 

On the basis of the results obtained so far we will now investigate some of the 
properties that the Dedekind reals IR, the geometric line R which models SDG, and 
related spaces have in the topos :/i. We will begin by investigating IR and some other 
spaces of models of 7Jocales, and then we will turn to some of the logical proper- 
ties of R. The emphasis however, will be on the interaction between IR and R induced 
by the standard map. 

As stated in the introduction, the properties that are valid in :/I’ for the Dedekind 
reals IT? tell us in which sense :ci is a model for intuitionistic analysis, and those valid 
for R tell us in which sense :B is a model for synthetic calculus. And it is one of 
the interesting aspects of :+ that it gives us a means to compare the two. 

The first consequence of Theorem 4.6 that we should note is the foliowing one. 

5.1. Theorem (Representation Theorem for models of T,-locales). L,et X be Q 
T,-locale in Sets, and let X (, : <GOP -+ Sets be the sheaf of mo 9ei.s of (ti’le proposi- 
tional theory corresponding to) X in 14’. Then 

X;,(A) z Cts(yA, X). 

(This describes for example the Dedekind reals II?, Cantor space, Bairn space, the 
function space P, etc. in 9. ) 

Proof. By 1.5, the sheaf X8 of models of X in the euclidean topos 8 is given by 
X,(-)zCts(-,X): IE Op -+Sets. By 2.3 and 4.6, X, zX,~ c y, which yields the 
isomorphism asserted in the theorem. Cl 

Note that there is no ambiguity in the notation i??” that we used in 5.1, since by 
Example 2.6, and Proposition 1 .lO, 

5.2. Theorem. In !G, all functions from F? to IR are continuous (and more general&, 
cf. Remark 1.11). 

Theorem 5.1 describes the points of the formal spaces corresponding to the 

Dedekind reals, the Cantor space, Baire space, etc. in fact these spaces of points 
all coincide with the corresponding formal spaces, by the following theorem. The 
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proof is almost literally the same as the one for 6 that we gave in 1.8. 

5.3. Theorem. Bar Induction holds in Y, i.e. formal Baire space has enough points. 
Consequently, in % every separable locale has enough points. In particular, the 
Dedekind unit interval [O, 1) c fl? and the Cantor vet are compact in 9. c3 

(We do not have a general argument for deriving the validity of Bar Induction 
in Y from its validity in&, despite the similarity of the proofs; Bar Induction in- 
volves universal quantification over bars in the tree M<‘, and therefore it is not 
taken care of by the conservation properties 2.4 and 2.5.) 

Let us turn to R, the object of 9 represented by C”(iR) E G. R carries a strict 
order relation < defined by XC y iff there exists an invertible ZE R such that 
z2 = y -X In the model, this gives the order relation you would expect to get: for 
example, if cy : %-+R = C”(iF?) is an element of R at stage A, A II- cx>O iff cy factors 
through C”(R,&C”(lF?) in 19, iff Y(Q): @)-4R factors through lR,,c IR. It 
follows that this order is total, i.e. 

x#O++(x<O or x>O)++x is invertible 

holds in %‘. The rationals are dense in this order, so the order topology on R coin- 
cides with the topology generated by rational open intervals, and this is the topology 
that we consider when speaking about topological properties of R. Here is one such 
property. 

5.4. Proposition. The smooth unit interval [0, l] c R is compact in :G. 

Proof. Let ti be a subsheaf of (i(R) at stage A, A =C”(lR”)/& such that A tt- 
“ ti covers [0, 11”. For each external cy E [0, 11, we have for the corresponding con- 
stant element a E R(A) that A IEZUE ‘!/ ark U. Without loss we may assume that 
k consists of rational intervals, so we find a cover (c/i* Ii of Ii? and rational inter- 

vals (pi*, qp) such that 

(where AY=C”(U,a)/(IIQp)‘). For XEZ(I)GR”, the set {(p~,qia,IxEL/iol} 
covers [0, l] G IR externally, so by taking a finite subcover and the intersection 
of the corresponding Ur’s, we find a neighbourhood VX of x and intervals 

(PI 9 4119 .--, (p,, q,J such that 

This holds for each XE Z(I), so (by extending the cover { V,~XEZ(I)} to 
{ VxUm”\Z(I)[x~Z(I))) we find 

A II- “ /v has a finite subcover’9. Cl 

The representability of R forces strong properties of continuous choice upon us. 
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The first of these is continuous choice for lawlike types, RL-choice. (Lawlike types 
are the types interpreted by constant sheaves, cf. van der Hoeven & Moerdijk [S].) 

5.5. Theorem (RL-choice). Let L be a lawlike type, such as N. Then 

~~r=VP5RxL(Vx~fP(x,1)-*9open cover ‘I/ of R 

WE %I 31 VXE u P(x, I)). 

Proof. Suppose such a PC RX L is given at stage A, A =C”([R”)/I, and A II- 

VXE R 21~ L P(x, 1). Now consider the projections 

AxC”(IR)~A 

P2 

1 

p2 acts as a generic smooth real at A x C”(lR): From 

AXC”([R)It-&LP(p,,l) 

we obtain an open cover {I/a x Va}a of fR” x I?, Ua c It?', Va G II?, and constant 
elements /a of the constant sheaf L, such that 

A, x C”( va) It- P( P2,4y) 

where A, = C”( &)/(I 1 I/a)--. 
NOW define the subsheaf V of ((II?) to te the sheaf generated by the conditions 

We have to show two things to complete the 

(1) A II-- /// is a cover, 

(2) All- VUE -CrlEL VXE ti P(x,l). 

proof: 

at JJ, i.e. B-A C”(‘R). Then (J j*) , For (l), take &-+A and a smooth real y -P 
; factors locally through the cover A’, x C”( V,) of A x C”(lI?); more precisely, make 
1 a pullback 

(f,, Ya) 
Ba -A, x C”( V,) 

r 1 CL Y) - 
B- A x C”(lR) 
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3 

Then the & cover B, and &II--WE -@YE U. For (2), it suffices to consider the i 

generating elements of ti, i.e. we need to show 

A,[; Y/EL VxE V,P(x,f) 

But A, x C”( VU) it- P( p2, I,) and from this we immediately obtain /4, II- VXE I/a i 
5 

PC% r,>* cl 

The importance of the analog of Theorem 5.5 for IR or N” (instead of R) is well- 
known in intuitionistic analysis. In our case, this is illustrated by the following two 
corollaries. 

5.6. Corollary. In Y, every countable (i.e. indexed by the natural numbers) cover 
of R has an open refinement. G 

5.7. Corollary. Let (X, 6) be a metric space in 14 having a dense substst D which IS 
a constant sheaf. Then a/i functions R-+X are continuous. In particular, all func- 
tions R -+ R are continuous in 14. 

Proof. Apply Theorem 5.5 to the predicates P,(x,d) =6(x,d)c2-“. Cl 

Continuity of ail functions R-+R follows also from properties of the standard 
map. Yet another proof which applies in a more general context, will be given in 
[13], cf. Theotem 6.1 below. 

The proof 0” Theorem 5.5 is based on the fact that from a stage A, the projection - - 
A x C”(lJ++C”(lR) acts as a generic element of R. This trick also easily yields 

5.8. Theorem. (a) (Local RR-choice) 

~=VPcRxR(Vx3yP(x,y)-+3open cover & of R VUE Q 
f 

XJ--+ R VXE UP(x, fx). 

(b) (Local continuous choice) Let Y be an external space, and Y the space in :g 
given by Y(A) = Cts( yA, Y) (as the spaces in Theorem 5.1 above). Then 

:~‘I=VPCRXY (VxgyP(x,y)--Gopen cover ti of R V&R 

gets function U f 
+Y VXEUP(X,fX). 

In particular, :G I= “Ali functions R-,Y are continuous”. Cl 

Another feature of the proof of 5.5 is the lifting of an external cover ({ iJa x Vol}a 
of A x R) to an internal one ({ C”( V,)}, of R, at stage A). Here is another applica- 
tion of the same idea. 

roposition. In 3, R has partitions of unity subordinate to every open cover. 
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Proof. Let i’/ be an open cover of R at stage A c G, A = C”(R”)/I, which we may 
without loss take to consist of rational intervals, i.e. 

&--“t/x~RXk tixx~U=some (p,q)“. 

Again consider the generic real p2 at stage ii x C”(R). Then 

so we 

AXC”(fR)lt-“3&z #p2EU=some (p,q)“, 

find an open cover { Ua x Vu}a of IR” x R and rational intervals {(pa, qa)}u 
such that 

(where A, = C”(c/,)/(I 1 II,>->. Thus VU C (p,, qa), so by shrinking the (p,, qJ we 

may without loss assume that &. = (pa, qn)- 

Now let { &Ja be an external partition of unity on I?” x IR subordinate to the 
cover ( Ua x Va}a. Each 19~ : I? x iR-+[O, l] is smooth, and can be regarded as an 
element of the sheaf [0, llR at stage ii. We now define SC [0, llR to be the subsheaf 
generated by the conditions 

It is 

A 
due 

then straightforward to check that 

AII-“{6~~&S} is a partition of unity subordinate to I?“. 1 

property of R of a rather different nature is a version of Markov’s principle, 
to A. Kock. An object Be G is called point-determined if for any B-&R = 

C”(R), if fez = 0 for all points P+ B of !?, then f = 0. Clearly, if B = CJo(P” )/I, 
B is point-determined iff I=. fl&. 

5.10. Proposition (Kock). An object BE G is point-determined liff 

:+E k’f~Re(+?xf(x)=O+X~f(x)#O). 

Proof. (a) Suppose B is point-determined, say B = C”(lR”)/. //i, aud let f E R’(W), 
i.e. f: A xb+R where A = C”(lR”)/J, be such that A it-1 V&B f(x) =O. Then in 
particular in all points I-J-+ A of A, 

1Il--~vxEB(f lp)(x)=O, 

SO 1 ~t-Yx~&f lp)#O, so there is an XEX with f(p,x)#O. Then also on a 
neighbourhood V” of p, f(y.x) #0 for all ,VE UP, so if we put Vi,= U,U R”‘\Z(J), 
we find that 

XI VP= C”( V,)/(J I VP)‘ II- f(x)#O 

for this particular XE.X. But the VP, p E Z(J), cover IF?,, so 

A II-XXE~B f(x)#O. 
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(t) Suppose 14 tt- ~~ER~(,~~~~~~=O~~~S(~)#O), where B=C”(R”)/I, and 
choose an f:B-+R with f$I. Then lit- -tbkf(x)=O, for if AEQ; and A+O, 

A it- vxf(x) = 0 would imply that B It bk.f(x) = 0 (since A has a point p, so there 
isamapB-+l- ’ A), i.e. f@:I, contradiction. Thus by hypothesis, 1 it- ZZ~f(s)#;t, 

~xEZ(I)f(X)#O. cl 

Note that as a consequence of 5.10, in (4, R is a field in the following sense (recall 
that in 3, x#O iff x is invertible, for all XER): 

:+ E t?xt, . . . . X,ER(l(X, =on -.*I&, = O)-+(one of the xi is invertible)). 

5.11. Corollary (Markov’s principle) 

Proof. This follows from 5.10, since a decidable PC N defines a map N -+2 c R, and 

N z C”(ll?)/. #fi is point-determined. El 

We now turn to the standard map. Since R is Archimedean and the rationals are 
dense, we may define (synthetically, cf. Veit [18]) for each XE R a Dedekind cut 
((p~Qlp<x), {qEQ/q>x}), and this defines the so-called standard map 

St: R-JR 

which sends each XE R to its standard parf st(.yj E Ii?. In a similar way, for each 
p ERR we can define its standardization st((p) E IF,‘, and this defines a map 

st :RR-4RRK. 

In the topos +, these standard maps have very simple represenrations. If f is a 
smooth real at A E G, A f -C”(lR), we obtain a continuous (even smooth) func- 
tions y(A)-+ [R by applying y, which is precisely a Dedekind real at stage A, by the 
representation Theorem 5.1. This function y(a)-+ R is the standard part off. Thus, 
RA IR is just “apply y”. A similar description can be given of RR&E?: if - - 
AIkcpERR, that is cp: ii x C”(lT?)-+C”(iR) in 43, application of y yields a con- 
tinuous function st(& : y(A) x R+iR, or st(@ : y(A)+@. Thus by Theorem 5.1, 
A !t- St(@) E I?‘“. (Note that there is no ambiguity in notation when we write the ex- 
ponentials RR, [RR, sin ce all functions are continuous.) It is clear that we have 

wmw)) = st(vW). 

Observe also that 

Vp,qeQ VXER (pcx<qt+p<st(x)<q), 

so st : R -+ IT? is continuous (in fact, stt ’ gives an isomorphism of complete Heyting 
algebras, i.e. R and JR define the same locale). From this and the fact that all func- 
tions from R to IR are continuous, it follows that all fuctions from R to R are con- 



Smoottl spaces versus continuous spaces 167 

tinuous (cf. the remark following 5.7). Similarly. if we equi;j RR with the C”- 
topology (uniform convergence on compacts of all derivatives), st : RR-G? is 
continuous. 

The standard maps st : R--G? and st : RR -+ fF?’ are almost surjective, in the sense 
that in ./f it is valid that I?x E tR 7 4” E R st( y) =x, nnd Vq E IR” 1 -G7ry E RR St(w) = 
cpp since in the points of G, R and tR are indistinguishable. 

Another way of looking at the standard maps, which explain their universality, 
is by moving the relevant spaces along the geometric inclusion (5 u .+ of 4.6. 
Since y* is “compose with i : Ec*G”, we find 

y*(R) = W-, m), y*(RR) = E(- x IR, ‘R). 

Also, from Theorem 5.1 it follows that 

IR c = Y*Wc ), (@) /# = y*((lPx),l ). 

Now a function R A [R in :G defined at stage A, q E N?‘(A) corresponds to a map 
&4RR in 19, or A x R--G? in 14. By applying the adjunction y*--i ye (and the fact 
that y*(lR)= IR), this corresponds to a map r*(A x R)--+fR in ?, i.e. a continuous 
function v(A)+@ in Sets, by theorem 5.1. Thus we have bijections 

L4 - lRR in 14 

~(A)-%R” in Sets 

~(A)+lR” in Is 

But again by Theorem 5. I, an element of fRa at y(a) in 1’ is the same as an element 
of RR at A in 3. Therefore we have 

/RRs /@_ 

This isomorphism is easily seen to come from the standard map Rz IR by com- 
position, i.e. in :q the map 

lP”-URR, VWqOSt 

is a bijection. In other words, R --% IR is the universal function R + II? (internally in 
t/1). Thus we have shown: 

5.12. Theorem. :4 I= lRR z RR, vi a compos;/ion with the standard map Rz 2. 
Thus, elements of llZR(A) correspond to continuous functions y(A) x E+m in Sets. 
(Consequent/y, 4 e “a[/ functions R + Ii? are continuous”, but we knew this 

already, cf. 5.7.) 0 

Curiously enough, functions from ll? 

roposition. In -9, every ftrnction 

to R behave rather differently: 

, IR --% R is constant ‘up to an injhi!esirnal 
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bit’, in the sense that st Q I,U is constant. In other words, in !q u function IR -% [R 
lifts to a function R --% R iff q~ is constant. 

0 

W,’ 
0 

Proof. (i) For a start, let us look at a global map [R* IR which lifts to lR*R, 
i.e. w is a natural transformation 

I,Y: Cts(+), I’Q-+cC(--, R). 

Now take the case A = C”(R), and apply w to the identity to find a smooth 
lfv‘#gq)=o: !R4?. 

A pointwise argument as in the proof of 1 .lO now shows that st * r,~ comes from 
“compose with a”, so [T has to be such that for any continuous .Y f, IR, where X 
is locally closed C, some lRn, the composite CJ 3 f is smooth. But then Q must be con- 
stant, for if IT’(~) #O, we can find a neighbourhood U” of y on which 0 is in- 
vertible, so if we take for X f, I’F? the function x-a-‘(ay + 1x1) defined on the 
neighbourhood X= {xl~y+ (xl EQ(UJ} of 0, (st * W)x(f)(x)=oy+ 1x1, which is 
not smooth. 

(ii) Now suppose A x R *R is a map IR-+R in ‘3 defined at stage A, where 
A = C”(lR”)/I. By applying y we find a C--map Z(I) x I?& IT? such that for each 
G-map BLA and each continuous map cy : y(&dR, o * (f, a) is in the image of 
st, i.e. is a C”-map. In particular, as in the global case we may conclude that for 
each t E Z(I), a& -) is constant. In other words, CJ does not depend on its second 
coordinate, and from this it easily follows that 

which completes the proof. Cl 

We can make an analysis similar to the one that led to 5.13 for the case of funti- 
tionais F: RR -NRm, but things turn out to be somewhat more difficult here. Sup- 
pose we are given such a functional F in ‘9 at stage a, i.e. 

F:AxRR+RR in %. 

Via y* -I y* (recall that y* preserves RR) this corresponds to a map 

y*(A) x y*(RR)+Rm in If’, 

that is, a natural transformation (over E) 

T : lE( -, y(A)) x EC-- x I-R, my+ Cts(- x IR, IR). 
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Our aim is to show that such a natural transformation T corresponds to a continuous 

map 

v(A) x Co3([R, k++ @(i-I?, Ii?), 

where C’(lR, IR) is given the compact-open topology, and C”(iR, iR) is equipped with 
the C”-topology (or FrCchet-topology), i.e. J1 -+f in C”([K, [R) if for all nl, the 
sequence { j$‘“)}n converges to ftnr) in CO(lR, IT?). 

Now clearly, such a map p determines a natural transformation T by com- 
position. (To be explicit, if XL y(A) and XX fR5 II? are maps in E, the function 
rX(f, ar) : XX IR +lR is defined by 

q&L a)(x, r) = v(f<x>, W, -N(r). 

Let us introduce an abbreviation, and write cp[f,a] for this function.) 
Conversely, a transformation 7 : E(-, y& x Q- x R, lR)-+Cts(- x II?, R) deter- 

mines at least a function )A X C”(R, R) ‘p-, C”( I?, RR) by calculating the action of T 
on points (just as we did in the proof of Theorem 1.10): If 1 = { *} is the one-point 
space in IE, we may define ~3 by (p(x, y) = rr(2, j), where 2: l--+ yA and j : 11 x R-+ R 

are the maps in E corresponding to XE y& YECOO@?, m). Indeed, by naturality of 
T we get that if X -&A and XxlJ? a ---+ [R are maps in E, and x is a point of X 
(corresponding to 2: 1 -+X in E), 

=q(fo~,ao(2x i))(*,r) 

= +Nf (x), &x, - ))K , 

in other words, 

This function p : YA x C”(lR, R)+C”(lR, I?) has the property that for any pair of 
V-maps Xf. YA and XX IR -5 IR, (p[_f, a] is a continuous function X x fR-+K 
We may now apply the following lemma to conclude that ~3 is continuous. 

5.14. Lemma. Let E be a Frkhet vector space (over IR), and X a Iocaly closed 
subspace of some I?“. If X x EA R is ‘pathcontinuous’ inI the sense that for each 
C”-map f : Y -+X x E (with Y a locally closed subspace of some RR”’ ), cp 2 f : Y -+ R 

is continuous, then cp is continuous. 

Proof. Assume that cp is not continuous at (x, e). Then we can find an E >O and a 
sequence (x,, e&+(x, e) such that l~(x~, e,) - &x, e)l z E, for all n. Proceeding as in 
Van Que & Reyes [14], we can define a C”-function g : lR-+E with g(0) = e, 
g(l/n)=e,. (Indeed, define g(t)=e+ C,_,x,,(t)eA, with eA=e,-e, in the notation 
of 10c. cit.) Now let Y = X x II?, and- f = X x g. Since (.y,,( 1 /YI)-$Y, 0) in Y, 
(p(x,,g(l/n))-+~(x,g(O)), i.e. (p(x,,,eJ-+cp(~~,e), a contradiction. Lz; 
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Thus we have shown a natural one-to-one correspondence between maps 
A x RRz lRR in !g and continuous functions y(&x C”(R, IR)ACa(R, IF?) in 
Sets. From this we immediately derive that in Y all functions F: RR +iR” (at an 
arbitrary stage A) are continuous. 

The universality of R ‘2 lRm appears as follows. We have seen that (continu- 
ous) maps [R+ I?? in Y at stage A correspond to continuous functions r(A) x li;-+lR 

(Theorems 5.1, 5.2). A subsheaf of these is formed by the functions v(A) x IR -4R 

that have all continuous partial derivatives with respect to the second (the IR-) 
variable, and it is easily checked that this is precisely the interpretation of “CO”- 
maps IR-G?” in 9. Thus we may reformulate the above correspondence between 
maps R R-Fd P at stag e A in :q and continuous maps y(A) x C”(R, lR)-%Z”(IR, IR) 
as an isomorphism in :Cr’, 

This correspondence may be unwinded by using the standard map st : RR -+[R? 
Clearly, si factors through C”(R, R)c RR, and if we regard it as a map 
RR --+C”(R, JR), the above isomorphism comes about through the bijectfon “com- 
pose with st” 

([~p)c”(F, ‘W --+ (@‘QR”, G w ,g o 6. 

(Let us stress again that this is a bijection in ,+, i.e. it works not only for global sec- 
tions, but at all stages.) 

For the record, 

5.P5. Theorem :G I=(I’F$~~~(IR~)~“(~*~), again via composition with the standard 
map RR -% C”(k?, I?). Thus, elements of (lP’“)R” at stage A correspond to con- 
tinuous functions yA x C”( II?, IR)-+C”( IR, IQ in Sets. Consequently, ~6’ k= “All func- 
tions RR -# are continuous”. il 

6. Some remarks on other models, the finite cover topology 

In the previous sections we have seen that if we force the generic C”-ring R to 

be local and Archimedean, i.e. (see Section 4) if we work in the smooth topos !+, 
intuitionistic analysis in general, and the Dedekind reals in particular, inherit some 
of the good properties of R, such as continuity of all functions. Our main tool for 
comparing R and R in this context was the adjoint retraction between :G and the 
euclidean topos 6:. The purpose of this section is to point out that many of these 
good properties for intuitionistic analysis (analysis on IR) fail if we do not force R 
to be Archimedean, while much of the smooth analysis (analysis on R) remains he 
same. 

Here it will be convenient to look at the analog of the topos :+ of sheaves on G, 
but with arbirrary covers replaced by finite ones. More precisely, let Efi,, be the site 
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with the same underlying category as E (cf. Definition 1.9), but with the Grothen- 
dieck topology generated by finite open covers (i.e., a family K = { Y,$+ Y}, 
covers X iff there is a finite open cover { U1, . . . , Un} of X such that each em- 
bedding U+X is in K), and let t(:rin be the topos Sh([Eri,). Similarly, define a site 
Grin with underlying category G (defined in Section 3) and with the Grothendieck 
topology generated by finite open covers, and let 3rin be the topos Sh(Gri,). 

It is clear that if we regard the functor y described in 3.5 as a functor 
G IJ fin+ lEfin 9 Theorem 2.3 still applies, and we obtain the anallog of Theorem 4.6 
for the toposes (‘/‘fin and &fin l We still write y and Q for the geometric moiphisms 
involved; so there is a commutative diagram of geometric norphisms 

I’, fin k .’ fin 

Y 

and the adjoint retraction ‘!‘rin $ :$fin gives US that Q * = Y* : ‘<fin -+ .//fin preserves the 
spaces of models of T,-locales, such as I??, Ir\J ‘, etc. 

We just said that in many respects smooth analysis does not change too much if 
we move from 5 to 3fi*. In fact, the presheaf topos Sets(C”-rings)tt = Se& is 
already an adequate mode1 for synthetic integration theory, for example. Here, 
however, we can never have an adjoint retraction from Sets”’ to a topological 
topos like the euclidean one, since there are P-rings C”(lR”)/I which are far from 
trivial, while the corresponding set of points r(P(IR”)/I) = Z(I) c IR” can be empty 
(for example, let I be the functions with compact support). This does not occur if 
we restrict our attention to germ-determined ideals, thus explaining why germ- 
determined ideals are so convenient to work with. 

We should point out here that there is some loss also: if one restricts ones atten- 
tion to germ-determined ideals, there can never be any invertible infinitesimals in 
the model. Such an object of invertible infinitesimals does exist, for example, in the 
smooth Zariski topos of sheaves on IL with the finite cover topology (this topos is 
the precise analog (for C”-rirgs) of the Zariski topos), and we expect that this 

feature will make the smooth Zariski topos an important object of future study (cf. 
Reyes [17], Moerdijk & Reyes [13]). 

Let us now give some examples of properties that fail to hold if we pass from the 
topos :/i to ://fin. First something that does not fail, however. From the proof that 
we gave of 19 t=“All functions R-+R are continuous’* (cf. Corollary 5.7) it may 
seem that this fact depends on the topology of G, but it does not. It even holds in 
the presheaf topos: 

6.1. Theorem. In Sets” OP, all functions from th4 smooth unit inter\*a/ [O, 1 ] C R to 
R we uniform/y continuous. 
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Proof. See Moerdijk & Reyes [13]. G 

6.2. Remark. It is quite surprising that we obtain uniform continuity instead of just 
continuity in 6.1, since [O, l] CR is not compact in Sets’“P (or in the smooth 
Zariski topos): if 6 is an invertible infinitesimal, (x- S, x+ S) is an open neighbour- 
hood of x for every x E [0, 11, and the cover {(x - S, x+ S) 1 x E [0, I] } cannot have a 
finite subcover. 

6.3. Corollary. In the smooth Zariski topos, in iGfin and in :% all functions from 
R to R are continuous. 0 

The analog of 6.3 for the Dedekind reals fails in :4’fin. To see this, let us first 
determine the Dedekind reals, and the space of continuous functions C*(lR, IR) in 
CGfin. These spaces coincide +th the corresponding formal spaces or locales, since 

6.4. Lemma. Let (@, J) be an arbitrary coherent site (J is generated by finite covers). 
Then in Sh(C, J), Bar Induction holds. In particular, :Cfin E “Bar Induction “, and 
all separable locales have enough points in i+fin. 

Proof. Take CEQ~, and let PC b-l<” be a monotone inductive bar at C. If GIE N’ 
externally, lr acts as a constant element cr of N’“] internally, so CII-.Yn O(n) EP. 
Hence since covers of C are finite and P is monotone, CII- a(n) E P for some n. 
Thus ,~={uEN<~ICII-UEP) bars R\J’ externally, and is monotone and induc- 
tive. Therefore ( > E p. 3 

For the following lemma, we have to return to the notation of Section 1. Let a3 
be a topological site, and Q=fin the site with the same underlying category as Q=, but 
with the topology generated by finite open covers. Assume that all spaces in Q= are 
locally compact, and for a space XE Q= write Q,,(X) (resp. Q(X)) for the locale of 
subobjects of a=(-, X) in Sh(Q=n”) (resp. Sh(Q=)). (M. Fourman pointed out to us 
that this lemma also follows from an unpublished result of A. Joyal.) 

6.5. Lemma. Let X E a3 as above, and let T be a regular (Hausdorff) space. Then 
a continuous map X f, T extends to a map Q,i,(X)A T Uf f(X) is compact. 
AIoreover, if this is the case, the extension g is unique. 

Qfin(x) 

Proof. Recall that X LQ,in(X) is the composition of the embeddings X A 
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Q(X) and &2(X:+ lJfi,(X). As observed in Section 1, X is a retract of Q(X), 

and the pair X c , In(X) induces an isomorphism Cts(X, T)zCts(Q(X), T), pro- 

vided T is a Tl -&ale. jy’ sends a cribie KE Q,,,(X) to its closure as a cribie in 
Q(X), i.e. 

Thus, 

.$(K) = { Y&X ) 3 open cover { Ua}a of Y such that 

each composite U,+ Y 3X is in K}. 

i-‘(K)=U{UopenGXIUcXEK). 

Now suppose we have a commutative diagram 

szfin(x) 

I 

i K 

x 
/ f 

First note that from the fact that T is a T,-space, it follows that 

Thus, if U 

(*) 

In(X) L Qfi, (X)x 
f 

T=Q(X)AX+ T. 

is open in T and Ya X is a map in c, 

Y&XEg-‘(I/) implies YzXEf-‘_P(U), i.e. f+( Y)C U. 

As another preparatory remark, we not; that for an arbitra-y subset .4 of T and 
an open neighbourhood U 2 A, the following are equivalent: 

(i) A is compact, and A c U. 
(ii) There is a compact Kc T with A c Kc_ U. 

(iii) For every open cover {U& of U, finitely many of the Us’s cover A. 
If these conditions hold, it is common to write 

A * U. 

NOW we show that from gi =f it follows that f(X)4 T: Suppose { V& is an 
open cover of T. Then Vu g-‘( V,) = true in Qfi,(X), so there is a finite coL.er 

(U 1, . . . , U,,) of X such that each inclusion UiGX is in some g-‘( 1/J. Therefore 
by (*), f(U;) c_ Vu,, so f(X) c V&-U Van. Thus f(X)4 T. 

Conversely, if f(X) is compact, we may define an extension sZ,i,(X)L T by 

$-l(u)= 
I 

Y~XIf$!l(Y)dl. 
1 

Clearly, f^-* is orderpreserving, and idx &l(T) since f(X) is compact) i.e. 4’. ’ 
preserves the top element. It is trivial to check that p-* preserves binary meets. For 
sups, suppose { Ua}a is an open cover of U, and YLXE~-*(U). We need to 
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show that Y --%X&$f-r(LJ&. By hypothesis, fp(Y)Csome compact Kc_ U, so 
since T is regular we may choose for each IE K a neighbourhood I”,, of t such that 
V, z some UU,. Then there exists a finite cover ( I/r,, . . . , V,,} of K, and if we let 
H$=q~-~f-~(V,,r,), i= 1, . . ..n. we find that IVjGY--ID,XE3-‘((1,1,), since fcp(H$)~ 
V,, (IK c_ V,, 17K compact C, U& Thus 60 E V,3-’ (r/,>. 

To show that $ =f, we use local compactness of X: 

i-1f-1(U)= {xl bf open nbd Wx of x with W,GXE~-‘(U)} 

={xIZopen nbd F&of x withf(W;r)eU]t 

=f-lw), provided X is locally compact. 

To show that 3 is the unique extension off, it suffices to show that 3 is minimal 
among extensions off, since T is a Tr-space. To this end, suppose g is another such 
extension, and suppose Y AXEg-l(U). We show that PDF-‘, i.e. that 
q F$‘(W), i.e. that fp( Y)e L’. So let { UU}@ be an open cover of U. Then t’& 
x~g-l(L/)= V,g-‘(QJ, so there is a finite cover {V,, . . . . Vn} of f’ such that each 
restriction cp 1 F is in some g-‘(l/a,). Then by (*) above, fp( I$) 5 c/Q,, i.e. 
fcp(Y)CU,,U-UL/,,. Thus g-‘sf^-‘, or fig, and the proof is complete. q 

6.6. Theorem. Let T be a regular Hausdorff space in Sets, and let T,,,, be the 
sheaf of models of (the propositional theory corresponding to) T in :Gfin. Then 

T,J+ (j-1 y(&+Tlf is continuous, cmd im( f ) is compact > 

Proof. Combine the preceding lemma with Corollary 1.5 and Prollosition 2.3 (i.e. 
the version of 4.6 for :+fin). Ll 

6.7. Example. In :Gfin, the 
continuous functions, 

Dedekind reals are interpreted by the of bounded 

R ,,,,,(A) = set of bounded cts functions y&-0?. 

6.8. Corollary. In :Gfin, “All functions from II? to IF? are continuous” fails to hold. 

Proof. Note that by 6.6 and 6.7, the interpretation of the Dedekind unit interval 
[0, I] is just the sheaf of continuous functions, 

[O, 11 $,,(A) 2 CtsoA LO, 1 I)* 

Therefore we will replace R by [0, l] for notational convenience, and show that here 
is a function [0, l] --+[O, 1] in Cgfin which is not continuous at, say, 3. 

Any continuous map f: N x 10, l]-+[O, 1) induces by composition a natural trans- 
formation [0, l] GT,n -+ [0, l] +l,n over G/t& i.e. f gives an element F’ of [0, l]l”+M). 
On the other hand, by T’reorem 6.6 an internal continuous map F : [0, l]-+[O, 1] at 
stage 1rJ corresponds to a continuous f: M+[O, I]109 ‘1 in Sets such that im(f) is 
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relatively compact in the space [0, Ilra ‘I equipped with the compact-op :n toplogy. 
In particular, if we regard f as a family { fn},, of functions 10, l]-+[O, !], this family 
must be equicontinuous by the Arzela-Ascoli theorem. So any family (fn},, which 
is not equicontinuous (at -$, say) induces an internal map F at the level N, with 

N II- “F is a function (0, I] -+[O, I]“, 

N IF “F is continuous (at f-)“. 0 

We give one more example of what we lose when we pass from :G to .//fin. 

6.9. Proposition. Markov ‘s principle 

VPC IN ((Vn(PnV~Pn)A~-G% Pn)-+& Pn) 

fails to hold in t’/‘fin. 

Proof. Again consider the object 174 of Grin, and consider the subsheaf P of N at 
N (two different N’s!) generated by 

[-n,n] It-nEP. 

Then M IF- Vn (Pnv 1Pn) since IN is discrete, and IN it- l+?n n E P, since at every 
point @N, pit-SznEP. But h\l~~&m~P, clearly. El 

6.10. Remark. The following finite form of Markov’s principle holds in ‘fin, ex- 
pressing that in :/inn 3 R is still a field in Kock’s sense (cf. the remark following 
5.10). 

I~fin t=“l(xt =O~**+x,=O)-+one of x1, . . .._u. is invertible”. 

(where the xi’s range over R). 

Proof. Let fi, . . . . fn be elements of R at stage A. Say A = C”(ff?“)II, so 

f l,...,j&A and if 

A It- l(fi =OA-Af,=O), 

then C”(V)/(I, fi, . . . , f,) - is the zero ring, i.e. 1 E (I, f,, . . . ,fi,)-, or equivalentiy, 

Wf, 9 l ** 9 f,) =0. But then I?“= l’l?‘\,Z(I)U r/(f,)U-•U u<f,), where U(A) = 
{x 1 f(x) # 0), and this gives a finite cover of A such that at each element of the cover 
it is forced that fi # OV l *-Vf,#O. Thus A It-f! #OV.--V,i;: #O. But in .C’fin, -v#O iff 
x is invertible, just as in ‘4. El 
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